Hodge-theoretic obstruction to the existence of quaternion algebras
نویسنده
چکیده
This paper gives a necessary criterion in terms of Hodge theory for representability by quaternion algebras of certain 2-torsion classes in the unramified Brauer group of a complex function field. This criterion is used to give examples of threefolds with unramified Brauer group elements which are the classes of biquaternion division algebras. DOI: https://doi.org/10.1112/S0024609302001546 Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-21886 Accepted Version Originally published at: Kresch, A (2003). Hodge-theoretic obstruction to the existence of quaternion algebras. Bulletin of the London Mathematical Society, 35(1):109-116. DOI: https://doi.org/10.1112/S0024609302001546 HODGE-THEORETIC OBSTRUCTION TO THE EXISTENCE OF QUATERNION ALGEBRAS
منابع مشابه
Hodge-theoretic Obstruction to Existence of Quaternion Algebras
The subject of this paper is the Brauer group of a nonsingular complex projective variety. More specifically, we study the question of whether a 2-torsion element of the cohomological Brauer group is representable by a quaternion algebra over the generic point. Using intersection theory – on schemes and on algebraic stacks – we are able to describe an obstruction to such a representation, and t...
متن کاملA brief introduction to quaternion matrices and linear algebra and on bounded groups of quaternion matrices
The division algebra of real quaternions, as the only noncommutative normed division real algebra up to isomorphism of normed algebras, is of great importance. In this note, first we present a brief introduction to quaternion matrices and quaternion linear algebra. This, among other things, will help us present the counterpart of a theorem of Herman Auerbach in the setting of quaternions. More ...
متن کاملNew Values for the Level and Sublevel of Composition Algebras
Constructions of quaternion and octonion algebras, suggested to have new level and sublevel values, are proposed and justified. In particular, octonion algebras of level and sublevel 6 and 7 are constructed. In addition, Hoffmann’s proof of the existence of infinitely many new values for the level of a quaternion algebra is generalised and adapted.
متن کاملCM points and quaternion algebras
2 CM points on quaternion algebras 4 2.1 CM points, special points and reduction maps . . . . . . . . . 4 2.1.1 Quaternion algebras. . . . . . . . . . . . . . . . . . . . 4 2.1.2 Algebraic groups. . . . . . . . . . . . . . . . . . . . . . 5 2.1.3 Adelic groups. . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.4 Main objects. . . . . . . . . . . . . . . . . . . . . . . . 7 2.1.5 Galois action...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017